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Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach
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Incompressible, inviscid, irrotational, unsteady flows with circulatioaround a distorted toroidal bubble
are considered. A general variational principle that determines the evolution of the bubble shape is formulated.
For a two-dimensional2D) cavity with a constant ared, exact pseudodifferential equations of motion are
derived, based on variables that determine a conformal mapping of the unit circle exterior into the region
occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables
is obtained. Stability of a stationary drifting 2D hollow vortex is demonstrated, when the gravity is small,
gA¥3T?<1. For a circulation-dominated regime of three-dimensional flows a simplified Lagrangian is sug-
gested, inasmuch as the bubble shape is well described by the cent®{&ijt¢ and by an approximately
circular cross section with relatively small aré®(&,t)<($|R’|d£€)?. In particular, a finite-dimensional dy-
namical system is derived and approximately solved for a vertically moving axisymmetric vortex ring bubble
with a compressed gas inside.
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[. INTRODUCTION cid approximation, based on the Euler equations, may pro-
vide useful results. Inviscid flows belong to the class of
Vortex ring bubbles in water are like usual vortex rings conservative dynamical systems and thus are more easily
with circulation, but the core is filled with air, thus they are studied by Hamiltonian and Lagrangian methdds-20].
also termed “air-core vortex rings.” The higher velocity fluid With these methods, it is possible to simplify the analysis
surrounding the core of the ring is at lower pressure than theonsiderably and make it more compact, especially for irro-
fluid farther away due to the Bernoulli effect. Vortex ring tational flows, when the original 3D problem reduces to ef-
bubbles can be generated in various ways naturally or artififectively a 2D problem on the free surfaf®13-20Q.
cially, and they are interesting objects both from experimen- The vortex ring bubble is a special example of a general
tal and theoretical points of view. Amazing examples of theclass of fluid dynamical problems involving the free surface
natural beauty are vortex bubbles blown by dolphins forseparating the fluid and dior generally two different fluids
amusement. Also whales sometimes blow ring bubbles thalhe aim in this paper is to develop a Hamiltonian formalism
can reach several meters in diameter. In laboratory condifor these systems, and the symmetric vortex ring bubble will
tions, toroidal bubbles can be created relatively easy by abe treated as a particular example. In other terms, we con-
air jet that is rapidly opened and closed at the bottom of aider the question about the principle of least action for a
water tank, as in the early experiments by Walters andyeneral toroidal bubble. The corresponding Lagrangian func-
Davidson[1]. The toroidal bubbles with circulation were tional is shown to possess, besides quadi@tiertial) terms
formed as a result of gravity-induced topological transforma-on generalized velocities, gyroscopic ter(éthe first order
tion of an initial large spherical bubble, when a “tongue” of on generalized velociti¢sThe gyroscopic terms are propor-
liquid penetrated the bubble from below. This appears to be #onal to the constant circulation along linked contours. This
generic way of the creation of bubble ringsee, e.g., Refs. property makes the toroidal bubble similar to a vortex fila-
[2,3], and references therginSuch spherical bubbles may ment, if the circulation is large. We should emphasize that
also be produced in nature, for instance, by underwater exsur approach, which is based on inviscid flows, cannot natu-
plosions. When formed the toroidal bubbles propagate uprally describe the topological transformation of, e.g., a rais-
wards with an increasing diameter. Amusing examples of théng spherical bubble into a vortex ring bubble as briefly dis-
generation and dynamics of vortex ring bubbles—or “silvercussed above.
rings"—may be found at the web sifd]. Having obtained a general variational formulation, we de-
The first attempts to describe the dynamics of the vortexive various approximations with reduced number of degrees
ring bubbles analytically have been made a long time agof freedom. First of all, we consider the exact reduction cor-
(see Refs[2,5,6], and references thergirit is clear that the responding to purely 2D flows around a cavity. In this case it
most general and realistic theoretical consideration should big possible to express the Lagrangian in terms of the so-
based on the Navier-Stokes equations, and thus is a vewralled conformal variable5—-20. For 3D flows, we do not
complicated nonlinear free-boundary problem in three-have an exact explicit expression for the Lagrangian, but
dimensional(3D) space. However, in many cases the invis-approximations are possible. Such approximate dynamical
systems take into account only the most relevant degrees of
freedom of the original system. In this way we have obtained
*Electronic address: ruban@itp.ac.ru an approximate Lagrangian for a relatively long and thin
"Electronic address: jens.juul.rasmussen@risoe.dk toroidal bubble. For an axially symmetric rising and spread-
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ing vortex ring bubble our variational approach provides ay

finite-dimensional approximate system that is a generalizabotemiaw on moving surfacd9,14]. The (normalized to

tloq_r(])f the quel d'SC.USSdEd t;y”Lundgireg anclil Marg{@“ th the fluid density pressureP()) of the gas inside the bubble
€ paper 1S organized as Ioflows. in Sec. i We derve they, gas is considered as approximately massless and adia-

general variational principle for the bubbles. We consider a atic depends on the total volume of the bubble

an illustration the example of bubbles without circulation, '

before we derive the general Lagrangian for bubbles with 1

circulation. The two-dimensional hollow vortex is consid- V=—§f (r-n)ds, (5)

ered in Sec. lll, while the three-dimensional hollow vortex z

with a general t°r°‘d?" sha_pe s considereql in Sec. IV‘.AS Svhere dS is an element of the surface area. The vertical
specific example we investigate the dynamics of the axisym: :

: . ; ) Cartesian coordinateis measured from the horizontal plane
metric vortex ring bubble. Finally, Sec. V contains summary. oo e pressure is zero at the equilibrium. The gravita-

tional acceleration is-ge,. Thus, at the horizontal surface
IIl. VARIATIONAL PRINCIPLE FOR BUBBLES of the fluid at the atmospheric pressifer instance, at the

A. Hamiltonian structure of equations of motion sea leve), z=z, ~—10 m. Equation(3) is simply the kine-

. Ik h | £ ional soluti .___matic condition, and Eq(4) follows from the Bernoulli
It is well known that a class of irrotational solutions exists equation for nonstationary potential floi&d].

in the framework of ideal hydrodynamics. Such solutions ", g possible to verify that the right-hand sides of E(.
describe potential flows with zero curl of the velocity field at and(4) have the form of variational derivatives

any moment of time in the bulk of the moving fluid. If the

liquid is also incompressibléwith the unit density, for sim- . OH{Z, WV} . SH{Z, ¥}

plicity) then the investigation of nonstationary irrotational =y _\P:T’ (6)
flows in a space regio® with the free surface can be

reduced to the consideration of Hamiltonian dynamics of thgyhere the HamiltoniarH{S, ¥} is the sum of the kinetic
surface[9,13-20. In this formulation, the shape of the sur- energy of the moving fluid, the internal energy of the com-
face. itself and the boundary valu& of the velocity po-  pressed gas, and the potential energy in the uniform gravita-

tential are the dynamical variables determining the state ofional field (all the quantities are normalized to the fluid den-
the system. The velocity potential of incompressible ﬂu'dsity),

satisfies the Laplace equation in the bulk of the fluid

1 g
V(r,t)=V®, A®=0, d|s=W. (1) H=§jD(VCD)2dr+€(V)+zJE(e[n)zzdS (7)

is the total time derivative of the boundary value of the

Besides the free surfag in general case the total boundary , . ) .

of the regionD has other pieces, which consist of infinitely Here the ad|a}bat|c relation between the internal energy and
far points ofD and/or some wall§such as surfaces of sub- (e pressure is used,

merged bodigs For the remaining boundary conditions for £(V)=—P(V) %)
®(r), we will suppose thatb(r) vanishes at infinitely far '
points, and the no-penetration condition at a motionless walihe derivation of the equalitg /W =V,, is easy. Indeed,
W (in particular, it can be the bottom with arbitrary profile  g,e to Egs(1) and(2) one can write

if it is present

(Vd-N)|w=0, @|.=0, 2 5H|5E:0=f Vb.Vsd dr=J2Vn5‘PdS
D

whereN is a vector normal to the wall.
The equations of motion fa¥, and¥ take the following
form:

The calculation ofsH/ 8% is a bit more involved. It consists
of two parts. First, due to the variatiof® (in the normal
direction of the integration domai without changing the

: otential® inside, the following terms arise:
S=V,=(n-V®)|s, @ P 9

V2
> +gz+P(V)

62 dS

5H(1)|5\I’=O:f
3

V= ia®+vz+ +P(V
S\ TR T reE PO
The second part comes from the condition that the va&iue
(4) on the new g + 6%) surface must remain the same as on the
s old X surface. To satisfy this requirement, the potertiabn
the old boundary should acquire the chang&®/dn) 5%..
This set of equations describe, e.g., the dynamics of a bubblgherefore the second term is

or a void submerged into a fluid is the speed of surface SH o
motion along the normal unit vectar directed inside the 5H(2)|awfo:f _( _ (?_) 53 dS=—f V253 dS.
bubble,V,, is the normal component of the velocity field, and - s oV an s "

2 V2
~Vi+ 5 +gz+P(V)
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The comparison of the sum of these two parts with &j. It is easy to show that Eq11) is equivalent to the simplest
gives the second equation from E@). variant of the Rayleigh-Plesset equation for the radius of a
Finally, we note that surface tension can be accounted faspherical bubblésee Ref[22], and references thergjrus-
by simply adding the termr [y dS, which is the surface ing V=(4m/3)R?,
energy, to Hamiltonian(7). Here o designates the surface
tension coefficientdivided by the fluid density L 3., : 20
RR+ ER =Pyt E'(V)— ?
B. Variational principle
Since Lagrangiaril0) does not depend on the time explic-
1. Bubbles without circulation itly, the system possesses the energy integral
It is observed that in the simplest case, when the potential
® is a single-valued function, the equations of moti@n
follow from the variational principles. A= &f L dt=0 with
the Lagrangian

\IIZ
AV + E(V) + PexV+ bV =E,.

Therefore the solution of Eq11) is determined by

L= L\Pids—ﬁ{z,qf}. 9) dy

1%
- | ,
| o Yo\ 2a M Eg— ET) — ey~ bV
This expression is written in the invariant form that does not
depend on the choice of the parametrization for the surfacgnere E, and V, are arbitrary constants. I£())=0 (the
shape. Practically, this choice is dictated by geometry of gpple may contain no gasthen the above expression de-
given problem. For instance, the parametrizatian  gcripes a spherical cavity collapse B¢, >0, as well as
=n(xy,t) is commonly used to study waves on the seaysssiple cavity formation for negative, ;.
surface. It is clear that due to the equality>dS More complex spherical bubble dynamics with a time de-
=W 5, dx dy the functionsy(x,y) and¥(x,y) form a pair  pendentP.,(t) is governed by LagrangiaflO) as well,
of canonically conjugated variabl§d,13]. But if we wantto  however, we do not have analytical solutions for that case.
study oscillations of a spherical bubble, the spherical coordiFor instance, the dependenig,(t) = Py+ P cost) is re-
natesr, 6, ¢ are more convenient. In this case the functionslated to the problem of single bubble sonoluminescé@gg
—W(6,¢) andQ(0,¢)=r3(6,¢)/3 can be taken as canoni- wherew is the frequency of drelatively long standing ul-

cal variables. trasound wave.
As an illustrative example, we consider the case corre-
sponding to spherically symmetric flows witj=0 and with 2. Toroidal bubbles with circulation

a constant external pressug,,. In this case the dynamical ¢ yariational formulation becomes more complicated in
variables depend only dnand we have the completely SOlV- o ~ase when the free surfabe( 9, £)—R=(X,Y,Z), with
able conservative system faf(t) and(t), represented by o< 92 and 0<¢<2m, is topologically equivalent to a

the Lagrangian torus, and the circulation of the velocity along linked con-
tours takes a nontrivial valuE. Now the potentiakb is a

2 . .
multivalued function

. v
Loph=—VV— avl’37 —E(V)— P V—bV?3, (10

O =g+ (T/2m)0, (12)

wherea=3"4m)?7 andb=32%4m)"% accounts for the where ¢ is the harmonic potential determined by a single-
surface tension. The equations of motion—the Euler- P y 9

e . : . valued boundary functiog(¥,£), and the velocity field cre-
Lagrange equations—corresponding to this Lagrangian areated by the multivalued harmonic functierhas zero normal

. component on the free surface. The important point is that
—V-ayBr=0, the potentiald is completely determined by the shape of the
toroidal bubble. The multivalued boundary functi®{ 9, &)
> b associated with the potentidlincreases by the value2as
W2 &' (V)= Pgyi— = ——==0. the coordinated acquires the increasen2 The kinetic en-
CRVES ergy of the flow is represented as the sum of circulation-

induced energy and the energy associated with the motion of

From here one can excludk and obtain the equation of the the bubble. In the general form, we have the following ex-

V- 6123

second order fow, pression:
1
. - o 1
Y Y e e+l e @ KT KC{EHZJ J Gs(51,5) Y(51) ¥(5,)dS, dS;
avl/.?: 6 av4/3 3 V1/3 (13)
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wheres; e 3, s,e 3, andGs(Ss;,S,) is a symmetric function where the vector functioR(v,¢) describes shapes of indi-
completely determined by a given shape of the bubble.  vidual vortex lines enumerated by the labet[0,I'], and
In order to have correct equations of motion R, &,t) R; is directed along the vortex lines on the sheet. On the
and (9, ¢,t) [the equations must be equivalent to Eg)., other hand, when considering the hollow vortex tube with a
it is necessary to include into the actiot= [£dt a term  strong circulation, we could use the functighas a coordi-
that will give the same contribution as the following term: nate on the bubble surface, instead of the coordidatand
in that case the Lagrangian of the hollow vortex tube would
L dt f 03 ds take the alternative form:
2 s

1
r L= §J ([ReXR]-R) AV dé—H{R(W, )}, (19
:ﬂf J f ([ReXRy]-Ry)O dt do dé.
whereH{R(V,¢)} is the total energy of the toroidal bubble.
It is clear that this expression should be transformed by som&hus, the only difference between E¢E8) and(19) is in the
integration in parts to a form whei@ is not employed, but Hamiltonians™,,s, and H. In the limit of a “thin vortex
only the derivative®, 0., and®, that are single-valued tube” the Hamiltonians are almost identical, inasmuch as the
functions. As a result, we obtain that the Lagrangian for amain contribution is due to logarithmically large circulation-

hollow vortex tube can be written as follows: induced kinetic energy.
r In the general case a free surface may consist of several
_ < - separated manifolds with nontrivial topology. All of these
= +— . X . : o "
£ L Y2 dS—H{Z, v} 3(2W)f RARAH RO, must be included into the Lagrangian in a similar manner.
+H[RiXR]0;—[R:XRy]0;d 9 dé. (14) lll. 2D HOLLOW VORTEX
Now we may identify the functiol® with the coordinate ~ As application of the theory described in the preceding
and thus the two last terms are equal to zero. Also it issection, let us first consider a 2D irrotational flowyinplane,
possible in general to express the potenfiads with the circulationl' =27y around a cavity having a finite
_ areaA=mr?. The 2D geometry allows us to employ the
‘MS)ZJ Ms(s,9)3(s)dS, (15)  theory of conformal mappings to derive exact equations of

motion for such a system. Conformal variables have been
where the “matrix” Ms is the inverse of the matrigs , and extensively used during recent years for analytical studies of

thus excludey from the Lagrangian. Then we will obtain the Waves on water surface, and for numerical simulatice,
Lagrangian of the form for instance, Refs[15—20). The system considered in this

section has a set of additional properties in comparison with
r the usual surface waves. The presence of the circulation
L= mJ (R-[ReXR)dd d¢—TI{Z} makes it similar to a vortex. At the same time, the hollow
vortex possesses inertial properties and a potential energy in
1 . : the gravitational field. For small values of the parameter
+ 5] f Ms(81,82)2(81)2(52)d5,dS,,  (16)  —gr3/2 5 stationary horizontal drift of the hollow vortex is
possible with the velocityVy~—gr?/(2y) and with the
where the effective potential energl{>} is the sum of the shape close to circular. This motion is stable, as will be dis-
circulation-induced energy, the internal energy of the com-cussed below. Therefore the content of this section will serve
pressed gas inside the bubble, the gravitational energy of thes a basis for further simplified descriptions of 3D

bubble, and the surface energy, circulation-dominated flows.
H{E}=F21CC{E}+5(V)+g f (e,-n)Z?dS+to f ds. A. Conformal mapping
2/ * Wi id infini di ional regibn which
17) e consider an infinite two-dimensional regibn whic

is topologically equivalent to the exterior of the unit circle.
It is interesting to note that for circulation-dominated con-Our purpose is to obtain an expression for the kinetic energy
figurations(it is important that the gradient oF along the  of the irrotational flow with the circulation 2y around the
surface should not be equal to zero at any poinB9f a  cavity in the case of an arbitrary given shape of the surface
similarity exists between a hollow vortex tube and an ordi-and arbitrary given boundary potentt#l (with the only con-
nary toroidal vortex shedt.sh). Indeed, dynamics of a tor- dition ¥+—W¥ + 27y after one turn along the boundary
oidal vortex sheet in a fluid without free boundary is gov- Strictly speaking, this energy is infinite because of the diver-
erned by the Lagrangiafsee, for instance, Ref23], and  gency of the corresponding integral at the infinity. But this is
references therejn not important for the equations of motion, inasmuch as the
L presence of an infinite constant term in the Hamiltonian in no
_ way influences the dynamics. Therefore only the excess of
EV'Sh'_§f ([ReXR]-R)dvde—Hyah{R(v.)}, (18) o energy in comparison with some basic state is needed. As
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the basic state, we shall take the perfect circular shape of thgniie P(*) excludes the harmonics with negative The

b_oundary, with the rat_j|us and p““?'y azimuthal velocity following equalities will be used in the further exposition:
field, inversely proportional to the distance from the central

point. A R 1 A A A

Since the velocity potentiab(y,z,t) satisfies the Laplace M=—-Hdg, P(+)=§(1iiH ), PM+pE)=1,
equation®,,+®,,=0, which is conformally invariant, it is

naturally to reformulate the problem in terms of the confor-

mal mapping of the unit circle exterior into the regién We have now prepared all the necessary tools, and we are

This mapping is determined by an analytical functiongpje to write down the Lagrangian for a 2D hollow vortex in
L (W) =y(w,t) +iz(w,t) of a complex variablew. The  the conformal variables:

function £, (w,t) has no singularities dtv|>1 and behaves
proportionally tow whenw— <. Therefore the expansion of = Zé’) (&t - ng)
this function in powers ofw contains no positive powers L.,n= yJ’ 4—d19 f wz—.dz‘}
higher than 1. The shape of the free surface is given para- ! :

(29)

metrically by the expression 272 |1 492
+ In —f (e —
Y(9,0)+iZ(9,8)= o (W, )] yeaid 4 O r 2
=90 V) 1
"o Tdﬁ— Ef YM yd S

0
=4a(0e+ X n(he™. (20 2 =
e g (-0 2@+0) o
3 (% S [ e )

In the potential" we now explicitly separate the term

y9, which is responsible for the circulation, AP (ze??)]1d . (25)
V(3.0=yd+y(d.0), @1 HereZ= o, {'=0dy{. Besides the obvious terms that were
oo already explained in the previous discussion, in the Lagrang-
9= t)eim?. = 22 ian Lo there is the term proportional to the constant area of
o m;w Ynl®) Yo=Y 22 the cavity. Its presence provides minimum of the circula-

. _ tional part of the Hamiltonian on the perfect shapere'?
The termyd corresponds to the multivalued harmonic func- + £,. To be punctual, we have also included the terms with
tion do(w) =Re(—iyLnw) with zero normal component of s | agrangian multipliera. and\ in order to specify ex-
Fhe velocity at the free surface. The single-valued function plicitly the analytical properties of the functiaf(9).
is related to evolution of the boundary shape. It can be un- tne variation of the action with Lagrangid@5) gives
derstood as a potential of the surface waves. The excess E%{fter some additional transformations, see Appendith

energy is the sum of two parts. The first part is due to theequations of motion fot(9,t) and ¥(9,1)
kinetic energy of the surface waves ’ e

o L [2iMy
ml| ¢l {={'PO) : (26)
Eam2m 3 LI I
The other part arises in the circulational energy as a result of - (Hip') 2= (y+ )2 e H !
changing of the effective cavity size, and it is completely - 2172 +(y+y")H HE
determined by the coefficierdt, : -
-0 7
2my? |1 L, d0? —g—t —. (27)
= — — v 21 2
E, 7 In rfg(ﬂ)e o - 2r

a(_)f course, these equations can also be obtained directly by
simply presenting the kinematic condition and the Bernoulli
6ﬂquation in conformal variables.

Now we have to introduce some necessary linear oper
tors[15-2( to deal with boundary values of analytical func-
tions. In Fourier representation these operators are diagon

0 =i )W ™ B(5) 1 1+ ) B. Canonical variables
=isgnm), =|m|, == sgnm)]. , . . ) ,
" o " m 2[ +sgrm)] Lagrangian(25) is written in terms of variables that are

(23 not canonically conjugated. For general purposes, such as

- convenience for a nonlinear analysis, a pair of canonical

Here the operatoH is the Hilbert transformation. The op- variables can be found. As the canonical coordinate, we take
eratorP(~) excludes the Fourier harmonics with positive  the real functiomy(9,t) such that
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L(9,0)=B(9,0)e?,  B(IH=(1+iH)q(d,1). (29

After substitution into Lagrangia(25), one can immediately
obtain the expression for the corresponding canonical mo-

mentump(d,t),

p=yHgq—PO[y(B—iB")]-PHO[w(B+iB")].
(29)

Now it is necessary to solve this equation for the potengtial

in order to express the Hamiltonian in termsepndp. The
result of the calculations issee Appendix B

—yla,p}

_ (P~ yH9)(@—Ma)+H[(p— yHg)H(g—Maq)]
(q—Ma)*+[H(g—Maq)]?

(30

Thus, the Hamiltonian for a 2D hollow vortex is
1 ~ ¥? -
Hid,p;= Ef ¢19,pIMyAq,p}d 9+ Pf q(1-M)qdd

2
In(%)wt&
r 2r?

2my?
2

+ gf (gsind+Hg cosd)?

X[(q'—Hg)cosd—(q+Hqg)sind]dd, (31

where ¢{q,p} should be taken from Ed30), andqq is the
zeroth Fourier harmonic of the functiay(9),

dd
QOZJQ(ﬁ)E-

C. Linearized equations for small deviations
from a circular shape

Let us consider an initial stage of evolution of a hollow

vortex, starting from a nearly perfect—circular—shapgth
the mean radius), in the case of a small initial potentigi.

PHYSICAL REVIEW B8, 056301 (2003

2
- .Y Y gr
_m=2i r—2m¢7m+ ?(1_m)b7m_ o7 (b—(m+1)~ Sm),

(34

whereé,,,; is the Kronecker delta. Excluding, we have the
set of equations

2
b_,,=2i lzm'b,m+ y—4(m2—m)b,m
r r

g
+ i M- (m+1)~ Sm)- (35)

A particular solution of this nonhomogeneous system is

3

r
b,=g

1 ryz[exp(Ziyt/rz)—l—Ziyt/rz], (36)

b_n=0, m>1. (37)

Applicability of the linearized equations implies that the ve-
locity of the vortex motion is small in comparison with the
velocity of rotation y/r. Thus, the parameten=gr3/y?
should be small, or at least the timshould be small,

w|sin(yt/r?)|<1.

If w<<1, then Eqs(36) and(37) are approximately valid for
arbitraryt and describe a horizontal drift of the vortex with
the mean velocitW/ 4= —gr?/(2y). The shape of the vortex
in this limit remains almost circular.

The general solution of the corresponding homogeneous
system is the linear combination

b_m(t)=>, cvb“gexp( —itlzm)), (39
v r

wherev is a discrete parameter. The dimensionless frequen-
ciesQ ™ and the corresponding mode&?. should be deter-
mined from the algebraic system

y_9”
[m—(Q(V)Jrm)z]b(,,)n=ﬁmb(,2m+l). (39)

It should be emphasized that the circular shape is not a stdt is clear that in the casg+0 the modes)"}, are delocal-
tionary solution in the presence of gravity. Therefore we ardZed both ind space and im representation. They can be
studying dynamics that can be, generally speaking, far fronQartlally cla§3|fled by the number of the last nonzero Fou-
equilibrium. However, at least at sufficiently small times we fier harmonics. Therefore=(n, ...), and

will have

+ oo

=reb(9,t), b(I,t)=by+ 2_1 b_.e '’ by~1,
(32

and|b_|<1 if m>1. From Egs.(26) and (27) we obtain
the linearizednonhomogeneojisystem

r?b_pm=—2my_n, (33

[n—(Q™ - )+n)2p")=0. (40)
From here we have=(n,*), and
QMH=—n+ . (41)

We see that regardless of the vortex siznd the value of
v, all the frequencies are real. On the other hand, we natu-
rally expect an instability for sufficiently largeand/or small
v. But there is no contradiction at this point because for a
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large size and/or a small circulation the behavior of a coherwhere
ent superposition aom-delocalized modes with real frequen-

cies is effectively exponential at small Therefore the lin- AL =A—ALRRIR?, (44)
earized equations for small deviatiofisom the circular, not
from an unknown stationary shgpéecome invalid very RL:Rt_Rg(Rt'Rg)”RgF- (45)

soon and the nonlinearity begins to play an essential role. It
should be emphasized that in this section we have not con- This Lagrangian includes the most principa' inertial ef-
sidered an exact stationary configuration of the hollow vorfects that correspond to the dynamicsRif&,t) and A(&,t)
tex, since we do not have an analytical expression for such @, scales of the order oh. The interplay between the
solution. One can expect that a stationary shape strongly d@gcond-order ~ time-derivative(inertial) terms and the
viates from circular when the paramefgrconsiderably in-  circulation-originated first-order terms will result in oscilla-
creases, and finally, above some critical vajug~1, a tions that are relatively fast if is large. However, in the
stable stationary solution does not exist. However, at small cjrculation-dominated regime this system has interesting so-
it does, and the stationary shape is almost circular, inasmughitions with these oscillations almost not excited. Approxi-
as the linearized equations for small deviations remain apmately such nonoscillating solutions are determined by the
proximately valid for arbitrary time and their solutions are | agrangian without the inertial terms. That means we have to
stable. What is the critical value, and how instability de- find a minimum of the effective potential energy
velops, these questions are for some future investigations. [1{R(&),A(£)} over A(£) with fixed R(£) and then substi-
tute the minimum-providing configuratioA, (¢) into II.
IV. 3D HOLLOW VORTEX TUBE The extremal configuratioA, (&) is determined by the fol-

lowing coupled equations:
A. Simplified Lagrangian 9 P q
We proceed to a simplified consideration of a 3D thin and r?

long closed hollow vortex tube with a smooth center line 87A, (£)

R(£,1)=(X(£,1),Y(£,1),2(£,1)

+P(V)+9Z(&)— oA, YA(£)=0, (46)

fﬁA*(f)lR'(f)ld?V (47)

and with approximately circular cross section having a rela-
tively small areaA(&,t) = ma?(£,t)<A?, wherea is the ra-
dius of the cross section antl is the total length of the
center line,

as easily seen from Lagrangigéf3). At this point we meet a
technical difficulty, although Eq46) has the explicit solu-
tion

A= ¢ |R'|dé. 42
fﬁ' |dé 42 A*l/2=i—2{w1’20+\/waz—(FZIZW)[P(V)+gZ(§)]},

This description should be good in most cases, since for (48

large enough circulation[?>gA®?) the local quasi-2D dy-

namics is stable with approximately circular cross sectionUnfortunately Eq(47) for V, with this expression foh, (£),

and also for a straight thin 3D tup&?>4xm2a(Alw)"2 see is hard to solve exactly, except for the simplest casg)

Ref. [5]] it is easy to demonstrate stability of longitudinal =0, whenA, (¢) is not dependent on the volume. Neverthe-

sausage like perturbations. less, approximate methods may be used in many cases and
Assuming slow variation ofA(&,t) along the curve corresponding approximate expressions for the effective

R(&,t) and neglecting small distortions of the shape of theHamiltonian #, {R(&)}=11{R(&),A,(§)} of the bubble

circular cross section, we can give an explicit form of all center line can be obtained. The equation of motion then will

terms in Egs.(16) and (17). As a result, a simplified La- have the general structure as follows:

grangian with logarithmic accuracy can be written as fol-

lows: 1 6H,

[ReX Rt]=Fﬁ, (49)

- 1 A2\ . R, |2
L= 3 j; In(K)(AL)2|R§|d§+ jg | ;' AlRg|dé the same as for a slender vortex filament in a fluid without
™ bubbles[23,24], however, with another Hamiltonian.
r I2 A2 Concerning a hollow vortex tube without gas inside it,
+3 % (R-[ReXR)dE— — jg In| ——||R¢|dé whenP (V) =0, in this case the dynamics of the center line is
3 8 A . . : .
described by the effective Hamiltonian

_5( A|R|d ) ZAIR|d
§ [R¢d¢ +gjg IR¢d¢ Hfi°{R(§)}=FffF(Z(f))IR’(g)Idf,

_ 1/2 1/2]
2m o fﬁ A |R§|d§' (43 where the functior(Z) is defined as follows:
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FIG. 1. The evolution of the vertical positiaf(t), the radiusR(t), and the volumé/(t) of a vortex ring bubble, for different values of
the circulation,'=1.0,1.5,2.0,2.5,3.0 #s. In these simulations the initial data weég=0, R,=0, Z,=0, Vo=1.0 n?, R,2=2.0 m, and
Zo=—[T?Ry/(4Vo) + Po—2Y27aRY?V s ¥?]1g, with g=9.8 m/$, o=7.5x10"° m*s’. The parameteP,=200 nf/s’> approximately
corresponds to the initial pressure 2 atm. The cut{® with the largest displacement, the cuiRét) with the weakest expansion, and the
curve V(t) that reaches the largest values Igrcorrespond to the highest value of the circulation.

T N C motion, namely, the vertical coordinait), the radius of
F(Z)= - In[A(C+ VC?=2) ]+ —————1. the ring R(t)=(X?+Y?)? and the total volume of the
& C+yCo-Z bubble V(t)=2#?a?(t)R(t). The corresponding finite-
(50) dimensional dynamical system is determined by the follow-
~ ) ) ing Lagrangian:
Here A~AgY?I'"! may be considered as approximately

constant, ancC?=27%02g~ '~ 2. The equation of motion (RV-RD)? [ R V. .
(49) for this case can be rewritten as ZRVZW ( log 3 + E(R +27°)—-27T'ZRR
R=F'(2)[e,xt]+F(Z)«kb, (51 I'2R R3
_ - T'”( Clg 7) —EWV) +9ZV- 2% gRY2Y12,
wheret, b, and x are the unit tangent vector on the center

line, the binormal vector, and the curvature of the line, re- (52)

spectively. This equation is a generalization of the well-

known LIA (localized induction approximationequation where the constant coefficients

[23-25.
Ci)=128m2, C{})=128r%exp(—4)

B. Axisymmetric motion are used to improve the logarithmic accuracy. These coeffi-

An obvious application of Lagrangia3) is for verti-  cients arise from asymptotic expansions of elliptic integrals
cally rising and spreading axisymmetric vortex ring bubbleexpressing the kinetic energy of a flow with a line source and
[2]. We need only three degrees of freedom to describe sualith a vortex string on the ring center line.
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Once the dependen&¥)) is given explicitly, it is easy to

write down and solve numerically the equations of motion
determined by Lagrangiafb2). We used an approximate

equation of state for the gas:
P(V)=Po(Vo/ V)4

Examples of the solutiong(t), R(t), and\(t), for several

values of the circulation, are presented in Fig. 1. The solu-—
tions have an oscillating behavior with a drift. With such

initial data, the amplitudes of oscillations f@(t) and R(t)
are smaller at largeF. However, oscillations foi/(t) be-

comes stronger at higheBt which in practice should result

in intensive sound irradiation.

System(52) has 6D phase space, but its weakly oscillat-

ing solutions approximately correspond to the ZQZ) sys-
tem that is obtained by neglecting the inertial tergsia-
dratic on the time derivativésn Eq.(52) and minimizing the

expressiorﬁ(R,Z,V) overy,

+ 5( V) —g ZV+ 23/27TO'R1/2V 1/2.

~ TI?°R R?
= Tm(c,ﬁfg)7

Thus, we have to solve the equatieﬁ(R,Z,V)/aV= 0,
I'’R

- P(V) _ gz+ 21/27TU_R1/2V*1/2: 0,

4y 53

and find from here an equilibrium valug, (R,Z). The slow
dynamics is approximately described by the Lagrangian

Lry=—27TZRR-II(R,Z,V, (R,Z)). (54)

However, since Eq53) is in fact already solved faZ(R, V),
it will be convenient to rewrite Lagrangiab4) in terms ofR
andV:

~ 2l [T°R :
LRV:T(W +P(V) - zlfsz“zv—l’z) RR

IR R®
- |n(cl(§g) V)_g(V)_23/27TO'Rl/2V1/2
FZR 1/2, 1/2y,—1/2
=V v +P(V)—2"“moRY4Y . (55
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FIG. 2. Comparisons of the bubble ring trajectorieZRiplane,
corresponding to the approximatioiS2) and (54), for different
values of the circulation. Parameters as in Fig. 1.

tem(54) is given in Fig. 2. We observe that the agreement is
very good, in particular, for the high values of the circula-
tion. Furthermore, the overall evolution is qualitatively in
agreement with the numerical results of Lundgren and Man-
sour [2], especially for large values of the parameRy,
when the relative variation of the volume is smake Fig. 3,
where all the plotted quantities have been made dimension-
less as in Ref[2]).

It should be kept in mind that applicability of the axisym-
metric (both 6D and 2D models requires, besidesr2R®
>V andI'?>>g(VIR)%? at least one more condition:

2
R~ 1/2V 1/2$

(57)

23/2770_

This inequality makes constant-cross-area configurations
stable to longitudinal sausagelike perturbatipfk If a vor-

tex ring bubble violates this criterion in the course of motion,
then it will be destabilized by surface tension and the devel-
opment of the instability, together with viscous effects, will
result in transformation of the ring into a closed chain of
smaller bubbles connected by thin vortex filaments, as it is
observed experimentally(concerning this phenomenon,
Lundgren and Mansoyi2] refer to Ref.[26]. However, we
found with realistic dependencé$))) that the Hamiltonian

This dynamical problem is, of course, completely integrableeyolution of the spreading ring, described above, typically
Phase trajectories in th&()) plane are the level contours of goes away from the instability. Thus, to destroy the ring,

the effective Hamiltonian

2 3

R R
| el ) +1

Hry=—7-|In| Ciog 7| + 1| &M = VE'(V)

+ 21/27TO'R1/2V 1/2

=E,

=const. (56)

preliminary viscous diffusion of the vorticity seems to be
necessary2,6] since it results in slow decreasing of the cir-
culation along a contour just above the bubble surface.
Finally, this(effective for the instability circulation becomes
considerably smaller thah and the ring will tend to break

up.

V. SUMMARY

In this work we have developed a variational approach for

The comparison between the drifting solutions of the 6Dthe theoretical study of the ideal incompressible irrotational
system(52) and the corresponding solutions of the 2D sys-flows with a distorted toroidal bubble, in the case when the
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FIG. 3. Simulations for dimensionless quantitigs: 1, 0=0.025,1'=5, V,=4m/3, Ry/ay=5, andPy=10,100,1000. The parameters
VO,RO,ZO for the 6D approximation were calculated from the 2D approximation in order to minimize the oscillations. Difference between
2D and 6D approximations is almost invisible f@(t) and R(t). The trajectories with largé®, are in good agreement with Fig. 3
in Ref. [2].

velocity potential is a multivalued function. Using this [£_ .dt by 8¢ gives the kinematic condition in terms of the
method, we have derived exact pseudodifferential equationsonformal variables

of motion for purely two-dimensional flows with circulation

around a single cavity. Also we have suggested a simplified T

Lagrangian for a three-dimensional thin hollow vortex tube. M =M.

As a simple particular case, the axisymmetric vertical motion 2i

of a spreading vortex ring bubble with a compressed gas

inside has been considered. Approximate solutions of a coNow a standard procedure is to divide this equationsy?,
responding finite-dimensional dynamical system have been
obtained. 2iM

rdEn

[l
¢
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APPENDIX A: VARIATION OF  [L o0t
Here we extract the equations of moti¢26) and (27) The variation off £L..n;dt by 5¢ and subsequent exclusion

from expression(25). First of all, variation of the action of the Lagrangian multipliex gives the equation
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) | D
PO | —2y+y)+ g(ng+ —7—>§'

2r?

72 ieil‘)

2 [(— d9
f((ﬁ)e'ﬁz

+ e 17| =0.

The statemenP()f=0 means thaf contains only har-

monics with positivem. The functionz’ e'? does not contain
harmonics with negativem. Therefore the equality

P()(f¢'e'")=0 is true. In our case this results in

-0 . 2
P —z§'<y+¢'>+( @w—%)lé'lz
,y2 i?eiﬁ
+ = ——|=0. (A1)
2 4

It is easy to check that
2 o1 qid 2
ﬁ)()(y_lg_e )_7’_
2 0
Now we have to take the real part of EGpl). Using the

-7
propertyP(~)+ P(*)=1, we get the equation which in fact is
solved fory,

=0 - 7\,
(QT+¢—?)|§|

=( ﬁ<—>| (y+ ¢')|é'l2?’<‘>(

2iM ¢
rdk

N[,

] +cC.C.
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After simplification that uses the equality
H2g My = ()2 = (My)?,
we finally obtain Eq.(27).
APPENDIX B: EXPRESSION (30)
To solve fory the equation
p=yHa-POLy(B—i18)]-POLy(B+iB)],

we perform the following steps. First, let us separate the
harmonics withm=0:

POLWB—ip") +p—Hal=ia=2iPDa,

wherea is an unknown real quantity constant én Now we
use the same trick as in Appendix A, i.e., we multiply the

above equation by the functigh+ iE’,
POy B—iB'[*+(p—yHa)(B+iB")]
=2iaP)(B+iB")
=iaqg,
and take the real part,
—ylB=iB'P=POL(p—yHa)(B+iB)]
+ PO (p—yH)(B~iB")].
Then we simplify it and use the explicit formula
B—iB'=(q—Mag)+iH(q—Maq),

which results in expressiof80).
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