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Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach
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Incompressible, inviscid, irrotational, unsteady flows with circulationG around a distorted toroidal bubble
are considered. A general variational principle that determines the evolution of the bubble shape is formulated.
For a two-dimensional~2D! cavity with a constant areaA, exact pseudodifferential equations of motion are
derived, based on variables that determine a conformal mapping of the unit circle exterior into the region
occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables
is obtained. Stability of a stationary drifting 2D hollow vortex is demonstrated, when the gravity is small,
gA3/2/G2!1. For a circulation-dominated regime of three-dimensional flows a simplified Lagrangian is sug-
gested, inasmuch as the bubble shape is well described by the center lineR(j,t) and by an approximately
circular cross section with relatively small area,A(j,t)!(ruR8udj)2. In particular, a finite-dimensional dy-
namical system is derived and approximately solved for a vertically moving axisymmetric vortex ring bubble
with a compressed gas inside.
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I. INTRODUCTION

Vortex ring bubbles in water are like usual vortex rin
with circulation, but the core is filled with air, thus they a
also termed ‘‘air-core vortex rings.’’ The higher velocity flui
surrounding the core of the ring is at lower pressure than
fluid farther away due to the Bernoulli effect. Vortex rin
bubbles can be generated in various ways naturally or a
cially, and they are interesting objects both from experim
tal and theoretical points of view. Amazing examples of t
natural beauty are vortex bubbles blown by dolphins
amusement. Also whales sometimes blow ring bubbles
can reach several meters in diameter. In laboratory co
tions, toroidal bubbles can be created relatively easy by
air jet that is rapidly opened and closed at the bottom o
water tank, as in the early experiments by Walters a
Davidson @1#. The toroidal bubbles with circulation wer
formed as a result of gravity-induced topological transform
tion of an initial large spherical bubble, when a ‘‘tongue’’ o
liquid penetrated the bubble from below. This appears to b
generic way of the creation of bubble rings~see, e.g., Refs
@2,3#, and references therein!. Such spherical bubbles ma
also be produced in nature, for instance, by underwater
plosions. When formed the toroidal bubbles propagate
wards with an increasing diameter. Amusing examples of
generation and dynamics of vortex ring bubbles—or ‘‘silv
rings’’—may be found at the web site@4#.

The first attempts to describe the dynamics of the vor
ring bubbles analytically have been made a long time
~see Refs.@2,5,6#, and references therein!. It is clear that the
most general and realistic theoretical consideration shoul
based on the Navier-Stokes equations, and thus is a
complicated nonlinear free-boundary problem in thre
dimensional~3D! space. However, in many cases the inv
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cid approximation, based on the Euler equations, may p
vide useful results. Inviscid flows belong to the class
conservative dynamical systems and thus are more ea
studied by Hamiltonian and Lagrangian methods@7–20#.
With these methods, it is possible to simplify the analy
considerably and make it more compact, especially for ir
tational flows, when the original 3D problem reduces to
fectively a 2D problem on the free surface@9,13–20#.

The vortex ring bubble is a special example of a gene
class of fluid dynamical problems involving the free surfa
separating the fluid and air~or generally two different fluids!.
The aim in this paper is to develop a Hamiltonian formalis
for these systems, and the symmetric vortex ring bubble
be treated as a particular example. In other terms, we c
sider the question about the principle of least action fo
general toroidal bubble. The corresponding Lagrangian fu
tional is shown to possess, besides quadratic~inertial! terms
on generalized velocities, gyroscopic terms~of the first order
on generalized velocities!. The gyroscopic terms are propo
tional to the constant circulation along linked contours. T
property makes the toroidal bubble similar to a vortex fi
ment, if the circulation is large. We should emphasize t
our approach, which is based on inviscid flows, cannot na
rally describe the topological transformation of, e.g., a ra
ing spherical bubble into a vortex ring bubble as briefly d
cussed above.

Having obtained a general variational formulation, we d
rive various approximations with reduced number of degr
of freedom. First of all, we consider the exact reduction c
responding to purely 2D flows around a cavity. In this cas
is possible to express the Lagrangian in terms of the
called conformal variables@15–20#. For 3D flows, we do not
have an exact explicit expression for the Lagrangian,
approximations are possible. Such approximate dynam
systems take into account only the most relevant degree
freedom of the original system. In this way we have obtain
an approximate Lagrangian for a relatively long and th
toroidal bubble. For an axially symmetric rising and sprea
©2003 The American Physical Society01-1
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ing vortex ring bubble our variational approach provides
finite-dimensional approximate system that is a general
tion of the model discussed by Lundgren and Mansour@2#.

The paper is organized as follows. In Sec. II we derive
general variational principle for the bubbles. We consider
an illustration the example of bubbles without circulatio
before we derive the general Lagrangian for bubbles w
circulation. The two-dimensional hollow vortex is consi
ered in Sec. III, while the three-dimensional hollow vort
with a general toroidal shape is considered in Sec. IV. A
specific example we investigate the dynamics of the axis
metric vortex ring bubble. Finally, Sec. V contains summa

II. VARIATIONAL PRINCIPLE FOR BUBBLES

A. Hamiltonian structure of equations of motion

It is well known that a class of irrotational solutions exis
in the framework of ideal hydrodynamics. Such solutio
describe potential flows with zero curl of the velocity field
any moment of time in the bulk of the moving fluid. If th
liquid is also incompressible~with the unit density, for sim-
plicity! then the investigation of nonstationary irrotation
flows in a space regionD with the free surfaceS can be
reduced to the consideration of Hamiltonian dynamics of
surface@9,13–20#. In this formulation, the shape of the su
face S itself and the boundary valueC of the velocity po-
tential are the dynamical variables determining the state
the system. The velocity potential of incompressible flu
satisfies the Laplace equation in the bulk of the fluid

V~r ,t !5“F, DF50, FuS5C. ~1!

Besides the free surfaceS, in general case the total bounda
of the regionD has other pieces, which consist of infinite
far points ofD and/or some walls~such as surfaces of sub
merged bodies!. For the remaining boundary conditions fo
F(r ), we will suppose thatF(r ) vanishes at infinitely far
points, and the no-penetration condition at a motionless w
W ~in particular, it can be the bottom with arbitrary profile!,
if it is present

~“F•N!uW50, Fu`50, ~2!

whereN is a vector normal to the wall.
The equations of motion forS andC take the following

form:

Ṡ5Vn[~n•“F!uS , ~3!

2Ċ5S 2Ṡ
]F

]n
1

V2

2
1gz1P~V! D U

S

5S 2Vn
21

V2

2
1gz1P~V! D U

S

. ~4!

This set of equations describe, e.g., the dynamics of a bu

or a void submerged into a fluid.Ṡ is the speed of surfac
motion along the normal unit vectorn directed inside the
bubble,Vn is the normal component of the velocity field, an
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Ċ is the total time derivative of the boundary value of t
potential C on moving surface@9,14#. The ~normalized to
the fluid density! pressureP(V) of the gas inside the bubbl
~the gas is considered as approximately massless and
batic! depends on the total volume of the bubble,

V52
1

3ES
~r•n!dS, ~5!

where dS is an element of the surface area. The verti
Cartesian coordinatez is measured from the horizontal plan
where the pressure is zero at the equilibrium. The grav
tional acceleration is2gez . Thus, at the horizontal surfac
of the fluid at the atmospheric pressure~for instance, at the
sea level!, z5z* '210 m. Equation~3! is simply the kine-
matic condition, and Eq.~4! follows from the Bernoulli
equation for nonstationary potential flows@21#.

It is possible to verify that the right-hand sides of Eqs.~3!
and ~4! have the form of variational derivatives

Ṡ5
dH$S,C%

dC
, 2Ċ5

dH$S,C%

dS
, ~6!

where the HamiltonianH$S,C% is the sum of the kinetic
energy of the moving fluid, the internal energy of the co
pressed gas, and the potential energy in the uniform grav
tional field ~all the quantities are normalized to the fluid de
sity!,

H5
1

2ED
~“F!2 dr1E~V!1

g

2ES
~ez•n!z2 dS. ~7!

Here the adiabatic relation between the internal energy
the pressure is used,

E8~V!52P~V!. ~8!

The derivation of the equalitydH/dC5Vn is easy. Indeed,
due to Eqs.~1! and ~2! one can write

dHudS505E
D
“F•“dF dr5E

S
VndC dS.

The calculation ofdH/dS is a bit more involved. It consists
of two parts. First, due to the variationdS ~in the normal
direction! of the integration domainD without changing the
potentialF inside, the following terms arise:

dH (1)udC505E
S
S V2

2
1gz1P~V! D dS dS.

The second part comes from the condition that the valueC
on the new (S1dS) surface must remain the same as on
old S surface. To satisfy this requirement, the potentialF on
the old boundary should acquire the change2(]F/]n)dS.
Therefore the second term is

dH (2)udC505E
S

dH
dC S 2

]F

]n D dS dS52E
S
Vn

2dS dS.
1-2
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The comparison of the sum of these two parts with Eq.~4!
gives the second equation from Eq.~6!.

Finally, we note that surface tension can be accounted
by simply adding the terms*S dS, which is the surface
energy, to Hamiltonian~7!. Here s designates the surfac
tension coefficient~divided by the fluid density!.

B. Variational principle

1. Bubbles without circulation

It is observed that in the simplest case, when the poten
F is a single-valued function, the equations of motion~6!
follow from the variational principledA5d*L dt50 with
the Lagrangian

L5E
S
CṠ dS2H$S,C%. ~9!

This expression is written in the invariant form that does
depend on the choice of the parametrization for the surf
shape. Practically, this choice is dictated by geometry o
given problem. For instance, the parametrizationz
5h(x,y,t) is commonly used to study waves on the s

surface. It is clear that due to the equalityCṠ dS
5Ch t dx dy the functionsh(x,y) andC(x,y) form a pair
of canonically conjugated variables@9,13#. But if we want to
study oscillations of a spherical bubble, the spherical coo
natesr ,u,w are more convenient. In this case the functio
2C(u,w) andQ(u,w)5r 3(u,w)/3 can be taken as canon
cal variables.

As an illustrative example, we consider the case co
sponding to spherically symmetric flows withg50 and with
a constant external pressurePext . In this case the dynamica
variables depend only ont, and we have the completely solv
able conservative system forC(t) andV(t), represented by
the Lagrangian

Lsph52CV̇2aV 1/3
C2

2
2E~V!2PextV2bV 2/3, ~10!

wherea531/3(4p)2/3, andb532/3(4p)1/3s accounts for the
surface tension. The equations of motion—the Eu
Lagrange equations—corresponding to this Lagrangian a

2V̇2aV 1/3C50,

Ċ2
a

6V 2/3
C22E8~V!2Pext2

2

3

b

V 1/3
50.

From here one can excludeC and obtain the equation of th
second order forV,

V̈
aV 1/3

2
1

6

V̇ 2

aV 4/3
1Pext1E8~V!1

2

3

b

V 1/3
50. ~11!
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It is easy to show that Eq.~11! is equivalent to the simples
variant of the Rayleigh-Plesset equation for the radius o
spherical bubble~see Ref.@22#, and references therein!, us-
ing V5(4p/3)R3,

RR̈1
3

2
Ṙ252Pext2E8~V!2

2s

R
.

Since Lagrangian~10! does not depend on the time expli
itly, the system possesses the energy integral

aV 1/3
C2

2
1E~V!1PextV1bV 2/35E0 .

Therefore the solution of Eq.~11! is determined by

t5E
V 0

V dṼ
A2aṼ1/3@E02E~ Ṽ!2PextṼ2bṼ 2/3#

,

where E0 and V0 are arbitrary constants. IfE(V)50 ~the
bubble may contain no gas!, then the above expression d
scribes a spherical cavity collapse forPext.0, as well as
possible cavity formation for negativePext .

More complex spherical bubble dynamics with a time d
pendentPext(t) is governed by Lagrangian~10! as well,
however, we do not have analytical solutions for that ca
For instance, the dependencePext(t)5P01Ps cos(vt) is re-
lated to the problem of single bubble sonoluminescence@22#,
wherev is the frequency of a~relatively long! standing ul-
trasound wave.

2. Toroidal bubbles with circulation

The variational formulation becomes more complicated
the case when the free surfaceS:(q,j)°R5(X,Y,Z), with
0<q,2p and 0<j,2p, is topologically equivalent to a
torus, and the circulation of the velocity along linked co
tours takes a nontrivial valueG. Now the potentialF is a
multivalued function

F5f1~G/2p!u, ~12!

wheref is the harmonic potential determined by a sing
valued boundary functionc(q,j), and the velocity field cre-
ated by the multivalued harmonic functionu has zero normal
component on the free surface. The important point is t
the potentialu is completely determined by the shape of t
toroidal bubble. The multivalued boundary functionQ(q,j)
associated with the potentialu increases by the value 2p as
the coordinateq acquires the increase 2p. The kinetic en-
ergy of the flow is represented as the sum of circulatio
induced energy and the energy associated with the motio
the bubble. In the general form, we have the following e
pression:

K5G2Kc$S%1
1

2E E GS~s1 ,s2!c~s1!c~s2!dS1 dS2 ,

~13!
1-3
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wheres1PS, s2PS, andGS(s1 ,s2) is a symmetric function
completely determined by a given shape of the bubble.

In order to have correct equations of motion forR(q,j,t)
andc(q,j,t) @the equations must be equivalent to Eq.~6!#,
it is necessary to include into the actionA5*L dt a term
that will give the same contribution as the following term

G

2pE dtE
S
QṠ dS

5
G

2pE E E ~@Rj3Rq#•Rt!Q dt dq dj.

It is clear that this expression should be transformed by so
integration in parts to a form whereQ is not employed, but
only the derivativesQ t , Qj , andQq that are single-valued
functions. As a result, we obtain that the Lagrangian fo
hollow vortex tube can be written as follows:

L5E
S
cṠ dS2H$S,c%1

G

3~2p!
E R•$@Rj3Rt#Qq

1@Rt3Rq#Qj2@Rj3Rq#Q t%dq dj. ~14!

Now we may identify the functionQ with the coordinateq
and thus the two last terms are equal to zero. Also it
possible in general to express the potentialc as

c~s!5E MS~s,s̃!Ṡ~ s̃!dS̃, ~15!

where the ‘‘matrix’’MS is the inverse of the matrixGS , and
thus excludec from the Lagrangian. Then we will obtain th
Lagrangian of the form

L5
G

3~2p!
E ~R•@Rj3Rt# !dq dj2P$S%

1
1

2E E MS~s1 ,s2!Ṡ~s1!Ṡ~s2!dS1 dS2 , ~16!

where the effective potential energyP$S% is the sum of the
circulation-induced energy, the internal energy of the co
pressed gas inside the bubble, the gravitational energy o
bubble, and the surface energy,

P$S%5G2Kc$S%1E~V!1
g

2ES
~ez•n!z2dS1sE

S
dS.

~17!

It is interesting to note that for circulation-dominated co
figurations~it is important that the gradient ofC along the
surface should not be equal to zero at any point ofS), a
similarity exists between a hollow vortex tube and an or
nary toroidal vortex sheet~v.sh.!. Indeed, dynamics of a tor
oidal vortex sheet in a fluid without free boundary is go
erned by the Lagrangian~see, for instance, Ref.@23#, and
references therein!

Lv.sh.5
1

3E ~@Rj3Rt#•R!dn dj2Hv.sh.$R~n,j!%, ~18!
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where the vector functionR(n,j) describes shapes of ind
vidual vortex lines enumerated by the labelnP@0,G#, and
Rj is directed along the vortex lines on the sheet. On
other hand, when considering the hollow vortex tube with
strong circulation, we could use the functionC as a coordi-
nate on the bubble surface, instead of the coordinateq, and
in that case the Lagrangian of the hollow vortex tube wo
take the alternative form:

L5
1

3E ~@Rj3Rt#•R!dC dj2H$R~C,j!%, ~19!

whereH$R(C,j)% is the total energy of the toroidal bubble
Thus, the only difference between Eqs.~18! and~19! is in the
HamiltoniansHv.sh. and H. In the limit of a ‘‘thin vortex
tube’’ the Hamiltonians are almost identical, inasmuch as
main contribution is due to logarithmically large circulatio
induced kinetic energy.

In the general case a free surface may consist of sev
separated manifolds with nontrivial topology. All of thes
must be included into the Lagrangian in a similar manne

III. 2D HOLLOW VORTEX

As application of the theory described in the preced
section, let us first consider a 2D irrotational flow inyzplane,
with the circulationG52pg around a cavity having a finite
area A5pr 2. The 2D geometry allows us to employ th
theory of conformal mappings to derive exact equations
motion for such a system. Conformal variables have b
extensively used during recent years for analytical studie
waves on water surface, and for numerical simulations~see,
for instance, Refs.@15–20#!. The system considered in thi
section has a set of additional properties in comparison w
the usual surface waves. The presence of the circula
makes it similar to a vortex. At the same time, the hollo
vortex possesses inertial properties and a potential energ
the gravitational field. For small values of the parameterm
5gr3/g2 a stationary horizontal drift of the hollow vortex i
possible with the velocityVd'2gr2/(2g) and with the
shape close to circular. This motion is stable, as will be d
cussed below. Therefore the content of this section will se
as a basis for further simplified descriptions of 3
circulation-dominated flows.

A. Conformal mapping

We consider an infinite two-dimensional regionD, which
is topologically equivalent to the exterior of the unit circl
Our purpose is to obtain an expression for the kinetic ene
of the irrotational flow with the circulation 2pg around the
cavity in the case of an arbitrary given shape of the surf
and arbitrary given boundary potentialC ~with the only con-
dition C°C12pg after one turn along the boundary!.
Strictly speaking, this energy is infinite because of the div
gency of the corresponding integral at the infinity. But this
not important for the equations of motion, inasmuch as
presence of an infinite constant term in the Hamiltonian in
way influences the dynamics. Therefore only the excess
the energy in comparison with some basic state is needed
1-4
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the basic state, we shall take the perfect circular shape o
boundary, with the radiusr and purely azimuthal velocity
field, inversely proportional to the distance from the cent
point.

Since the velocity potentialF(y,z,t) satisfies the Laplace
equationFyy1Fzz50, which is conformally invariant, it is
naturally to reformulate the problem in terms of the conf
mal mapping of the unit circle exterior into the regionD.
This mapping is determined by an analytical functi
z* (w,t)5y(w,t)1 iz(w,t) of a complex variablew. The
function z* (w,t) has no singularities atuwu.1 and behaves
proportionally tow whenw→`. Therefore the expansion o
this function in powers ofw contains no positive power
higher than 1. The shape of the free surface is given p
metrically by the expression

Y~q,t !1 iZ~q,t !5z* ~w,t !uw5eiq

[z~q,t !

5z1~ t !eiq1 (
m52`

0

zm~ t !eimq. ~20!

In the potentialC we now explicitly separate the term
gq, which is responsible for the circulation,

C~q,t !5gq1c~q,t !, ~21!

c~q,t !5 (
m52`

1`

cm~ t !eimq, c2m5c̄m . ~22!

The termgq corresponds to the multivalued harmonic fun
tion F0(w)5Re(2 ig Ln w) with zero normal component o
the velocity at the free surface. The single-valued functionc
is related to evolution of the boundary shape. It can be
derstood as a potential of the surface waves. The exces
energy is the sum of two parts. The first part is due to
kinetic energy of the surface waves

Esw52p (
m52`

1` umuucmu2

2
.

The other part arises in the circulational energy as a resu
changing of the effective cavity size, and it is complete
determined by the coefficientz1 :

Eg52
2pg2

4
lnU1r E z~q!e2 iq

dq

2pU2

.

Now we have to introduce some necessary linear op
tors @15–20# to deal with boundary values of analytical fun
tions. In Fourier representation these operators are diago

Ĥm5 i sgn~m!, M̂m5umu, P̂m
(7)5

1

2
@17sgn~m!#.

~23!

Here the operatorĤ is the Hilbert transformation. The op
eratorP̂(2) excludes the Fourier harmonics with positivem,
05630
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while P̂(1) excludes the harmonics with negativem. The
following equalities will be used in the further exposition:

M̂52Ĥ]q , P̂(7)5
1

2
~16 iĤ !, P̂(1)1 P̂(2)51.

~24!

We have now prepared all the necessary tools, and we
able to write down the Lagrangian for a 2D hollow vortex
the conformal variables:

Lconf52gE ~ ż z̄2zG z!

4i
dq1E c

~żz̄82zG z8!

2i
dq

1
2pg2

4
lnU1r E z~q!e2 iq

dq

2pU2

2
g2

2r 2E ~z8z̄2zz̄8!

4i
dq2

1

2E cM̂cdq

2
g

2E S z2 z̄

2i
D 2

~z81 z̄8!

2
dq1E @l P̂(1)~ze22iq!

1l P̂(2)~ z̄e2iq!#dq. ~25!

Here ż5] tz, z85]qz. Besides the obvious terms that we
already explained in the previous discussion, in the Lagra
ian Lconf there is the term proportional to the constant area
the cavity. Its presence provides minimum of the circu
tional part of the Hamiltonian on the perfect shapez5reiq

1z0 . To be punctual, we have also included the terms w
the Lagrangian multipliersl and l̄ in order to specify ex-
plicitly the analytical properties of the functionz(q).

The variation of the action with Lagrangian~25! gives
~after some additional transformations, see Appendix A! the
equations of motion forz(q,t) andc(q,t),

ż5z8P̂(2)S 2iM̂ c

uz8u2
D , ~26!

ċ5
~Ĥc8!22~g1c8!2

2uz8u2
1~g1c8!ĤS Ĥc8

uz8u2D
2g

~z2 z̄ !

2i
1

g2

2r 2
. ~27!

Of course, these equations can also be obtained directl
simply presenting the kinematic condition and the Berno
equation in conformal variables.

B. Canonical variables

Lagrangian~25! is written in terms of variables that ar
not canonically conjugated. For general purposes, such
convenience for a nonlinear analysis, a pair of canon
variables can be found. As the canonical coordinate, we t
the real functionq(q,t) such that
1-5
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z~q,t !5b~q,t !eiq, b~q,t !5~11 iĤ !q~q,t !. ~28!

After substitution into Lagrangian~25!, one can immediately
obtain the expression for the corresponding canonical
mentump(q,t),

p5gĤq2 P̂(2)@c~b2 ib8!#2 P̂(1)@c~b̄1 i b̄8!#.
~29!

Now it is necessary to solve this equation for the potentiac
in order to express the Hamiltonian in terms ofq andp. The
result of the calculations is~see Appendix B!

2c$q,p%

5
~p2gĤq!~q2M̂q!1Ĥ@~p2gĤq!Ĥ~q2M̂q!#

~q2M̂q!21@Ĥ~q2M̂q!#2
.

~30!

Thus, the Hamiltonian for a 2D hollow vortex is

H$q,p%5
1

2E c$q,p%M̂c$q,p%dq1
g2

2r 2E q~12M̂ !q dq

2
2pg2

2 F lnS q0

r D1
q0

2

2r 2G
1

g

2E ~q sinq1Ĥq cosq!2

3@~q82Ĥq!cosq2~q1Ĥq8!sinq#dq, ~31!

wherec$q,p% should be taken from Eq.~30!, andq0 is the
zeroth Fourier harmonic of the functionq(q),

q05E q~q!
dq

2p
.

C. Linearized equations for small deviations
from a circular shape

Let us consider an initial stage of evolution of a hollo
vortex, starting from a nearly perfect—circular—shape~with
the mean radiusr ), in the case of a small initial potentialc.
It should be emphasized that the circular shape is not a
tionary solution in the presence of gravity. Therefore we
studying dynamics that can be, generally speaking, far fr
equilibrium. However, at least at sufficiently small times w
will have

z5reiqb~q,t !, b~q,t !5b01 (
m51

1`

b2me2 iq, b0'1,

~32!

and ub2mu!1 if m.1. From Eqs.~26! and ~27! we obtain
the linearized~nonhomogeneous! system

r 2ḃ2m522mc2m , ~33!
05630
o-

ta-
e
m

ċ2m52i
g

r 2
mc2m1

g2

2r 2
~12m!b2m2

gr

2i
~b2(m11)2dm1!,

~34!

wheredm1 is the Kronecker delta. Excludingc, we have the
set of equations

b̈2m52i
g

r 2
mḃ2m1

g2

r 4
~m22m!b2m

1
g

ir
m~b2(m11)2dm1!. ~35!

A particular solution of this nonhomogeneous system is

b215
gr3

4ig2
@exp~2igt/r 2!2122igt/r 2#, ~36!

b2m50, m.1. ~37!

Applicability of the linearized equations implies that the v
locity of the vortex motion is small in comparison with th
velocity of rotation g/r . Thus, the parameterm5gr3/g2

should be small, or at least the timet should be small,

musin~gt/r 2!u!1.

If m!1, then Eqs.~36! and~37! are approximately valid for
arbitrary t and describe a horizontal drift of the vortex wit
the mean velocityVd52gr2/(2g). The shape of the vortex
in this limit remains almost circular.

The general solution of the corresponding homogene
system is the linear combination

b2m~ t !5(
n

Cnb2m
(n) expS 2 i t

g

r 2
V (n)D , ~38!

wheren is a discrete parameter. The dimensionless frequ
ciesV (n) and the corresponding modesb2m

(n) should be deter-
mined from the algebraic system

@m2~V (n)1m!2#b2m
(n) 5

gr3

ig2
mb2(m11)

(n) . ~39!

It is clear that in the caseg5” 0 the modesb2m
(n) are delocal-

ized both inq space and inm representation. They can b
partially classified by the numbern of the last nonzero Fou
rier harmonics. Thereforen5(n, . . . ), and

@n2~V (n, . . . )1n!2#b2n
(n, . . . )50. ~40!

From here we haven5(n,6), and

V (n,6)52n6An. ~41!

We see that regardless of the vortex sizer and the value of
g, all the frequencies are real. On the other hand, we n
rally expect an instability for sufficiently larger and/or small
g. But there is no contradiction at this point because fo
1-6
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large size and/or a small circulation the behavior of a coh
ent superposition ofm-delocalized modes with real frequen
cies is effectively exponential at smallt. Therefore the lin-
earized equations for small deviations~from the circular, not
from an unknown stationary shape! become invalid very
soon and the nonlinearity begins to play an essential role
should be emphasized that in this section we have not c
sidered an exact stationary configuration of the hollow v
tex, since we do not have an analytical expression for su
solution. One can expect that a stationary shape strongly
viates from circular when the parameterm considerably in-
creases, and finally, above some critical valuem* ;1, a
stable stationary solution does not exist. However, at smam
it does, and the stationary shape is almost circular, inasm
as the linearized equations for small deviations remain
proximately valid for arbitrary time and their solutions a
stable. What is the critical valuem* and how instability de-
velops, these questions are for some future investigation

IV. 3D HOLLOW VORTEX TUBE

A. Simplified Lagrangian

We proceed to a simplified consideration of a 3D thin a
long closed hollow vortex tube with a smooth center line

R~j,t !5„X~j,t !,Y~j,t !,Z~j,t !…

and with approximately circular cross section having a re
tively small areaA(j,t)5pa2(j,t)!L2, wherea is the ra-
dius of the cross section andL is the total length of the
center line,

L5 R uR8udj. ~42!

This description should be good in most cases, since
large enough circulation (G2@gA3/2) the local quasi-2D dy-
namics is stable with approximately circular cross secti
and also for a straight thin 3D tube@G2.4p2s(A/p)1/2, see
Ref. @5## it is easy to demonstrate stability of longitudin
sausage like perturbations.

Assuming slow variation ofA(j,t) along the curve
R(j,t) and neglecting small distortions of the shape of
circular cross section, we can give an explicit form of
terms in Eqs.~16! and ~17!. As a result, a simplified La-
grangian with logarithmic accuracy can be written as f
lows:

L̃5
1

8p R lnS L2

A D ~Ȧ'!2uRjudj1 R uṘ'u2

2
AuRjudj

1
G

3 R ~R•@Rj3Rt# !dj2
G2

8p R lnS L2

A D uRjudj

2ES R AuRjudj D1g R ZAuRjudj

22p1/2s R A1/2uRjudj, ~43!
05630
r-

It
n-
-
a
e-

ch
p-

d

-

or

,

e
l

-

where

Ȧ'5At2Aj~Rt•Rj!/uRju2, ~44!

Ṙ'5Rt2Rj~Rt•Rj!/uRju2. ~45!

This Lagrangian includes the most principal inertial e
fects that correspond to the dynamics ofR(j,t) andA(j,t)
on scales of the order ofL. The interplay between the
second-order time-derivative~inertial! terms and the
circulation-originated first-order terms will result in oscilla
tions that are relatively fast ifG is large. However, in the
circulation-dominated regime this system has interesting
lutions with these oscillations almost not excited. Appro
mately such nonoscillating solutions are determined by
Lagrangian without the inertial terms. That means we hav
find a minimum of the effective potential energ
P$R(j),A(j)% over A(j) with fixed R(j) and then substi-
tute the minimum-providing configurationA* (j) into P.
The extremal configurationA* (j) is determined by the fol-
lowing coupled equations:

G2

8pA* ~j!
1P~V!1gZ~j!2p1/2sA

*
21/2~j!50, ~46!

R A* ~j!uR8~j!udj5V, ~47!

as easily seen from Lagrangian~43!. At this point we meet a
technical difficulty, although Eq.~46! has the explicit solu-
tion

A
*
21/25

4p

G2
$p1/2s1Aps22~G2/2p!@P~V!1gZ~j!#%,

~48!

unfortunately Eq.~47! for V, with this expression forA* (j),
is hard to solve exactly, except for the simplest case,P(V)
50, whenA* (j) is not dependent on the volume. Neverth
less, approximate methods may be used in many cases
corresponding approximate expressions for the effec
Hamiltonian H* $R(j)%5P$R(j),A* (j)% of the bubble
center line can be obtained. The equation of motion then
have the general structure as follows:

@Rj3Rt#5
1

G

dH*
dR

, ~49!

the same as for a slender vortex filament in a fluid witho
bubbles@23,24#, however, with another Hamiltonian.

Concerning a hollow vortex tube without gas inside
whenP(V)50, in this case the dynamics of the center line
described by the effective Hamiltonian

H
*
P50$R~j!%5G R F„Z~j!…uR8~j!udj,

where the functionF(Z) is defined as follows:
1-7
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FIG. 1. The evolution of the vertical positionZ(t), the radiusR(t), and the volumeV(t) of a vortex ring bubble, for different values o

the circulation,G51.0,1.5,2.0,2.5,3.0 m2/s. In these simulations the initial data wereV̇050, Ṙ050, Ż050, V051.0 m3, R052.0 m, and
Z052@G2R0 /(4V0)1P0221/2psR0

1/2V 0
21/2#/g, with g59.8 m/s2, s57.531025 m3/s2. The parameterP05200 m2/s2 approximately

corresponds to the initial pressure 2 atm. The curveZ(t) with the largest displacement, the curveR(t) with the weakest expansion, and th
curveV(t) that reaches the largest values forV, correspond to the highest value of the circulation.
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te
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nd
F~Z!5
G

4p H ln@L̃~C1AC22Z!#1
C

C1AC22Z
J .

~50!

Here L̃;Lg1/2G21 may be considered as approximate
constant, andC252p2s2g21G22. The equation of motion
~49! for this case can be rewritten as

Rt5F8~Z!@ez3t#1F~Z!kb, ~51!

where t, b, andk are the unit tangent vector on the cen
line, the binormal vector, and the curvature of the line,
spectively. This equation is a generalization of the we
known LIA ~localized induction approximation! equation
@23–25#.

B. Axisymmetric motion

An obvious application of Lagrangian~43! is for verti-
cally rising and spreading axisymmetric vortex ring bubb
@2#. We need only three degrees of freedom to describe s
05630
r
-
-

ch

motion, namely, the vertical coordinateZ(t), the radius of
the ring R(t)5(X21Y2)1/2, and the total volume of the
bubble V(t)52p2a2(t)R(t). The corresponding finite-
dimensional dynamical system is determined by the follo
ing Lagrangian:

LZRV5
~ṘV2RV̇!2

16p2R3
lnS Clog

(A) R3

V D1
V
2

~Ṙ21Ż2!22pGZRṘ

2
G2R

4
lnS Clog

(G) R3

V D2E~V!1gZV223/2psR1/2V 1/2,

~52!

where the constant coefficients

Clog
(A)5128p2, Clog

(G)5128p2 exp~24!

are used to improve the logarithmic accuracy. These coe
cients arise from asymptotic expansions of elliptic integr
expressing the kinetic energy of a flow with a line source a
with a vortex string on the ring center line.
1-8
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Once the dependenceP(V) is given explicitly, it is easy to
write down and solve numerically the equations of moti
determined by Lagrangian~52!. We used an approximat
equation of state for the gas:

P~V!5P0~V0 /V!1.4.

Examples of the solutionsZ(t), R(t), andV(t), for several
values of the circulation, are presented in Fig. 1. The so
tions have an oscillating behavior with a drift. With suc
initial data, the amplitudes of oscillations forZ(t) andR(t)
are smaller at largerG. However, oscillations forV(t) be-
comes stronger at highestG, which in practice should resul
in intensive sound irradiation.

System~52! has 6D phase space, but its weakly oscill
ing solutions approximately correspond to the 2D (R,Z) sys-
tem that is obtained by neglecting the inertial terms~qua-
dratic on the time derivatives! in Eq. ~52! and minimizing the

expressionP̃(R,Z,V) over V,

P̃5
G2R

4
lnS Clog

(G) R3

V D1E~V!2gZV123/2psR1/2V 1/2.

Thus, we have to solve the equation]P̃(R,Z,V)/]V50,

2
G2R

4V 2P~V!2gZ121/2psR1/2V 21/250, ~53!

and find from here an equilibrium valueV* (R,Z). The slow
dynamics is approximately described by the Lagrangian

L̃RZ522pGZRṘ2P̃„R,Z,V* ~R,Z!…. ~54!

However, since Eq.~53! is in fact already solved forZ(R,V),
it will be convenient to rewrite Lagrangian~54! in terms ofR
andV:

L̃RV5
2pG

g S G2R

4V 1P~V!221/2psR1/2V 21/2DRṘ

2
G2R

4
lnS Clog

(G) R3

V D2E~V!223/2psR1/2V 1/2

2VS G2R

4V 1P~V!221/2psR1/2V 21/2D . ~55!

This dynamical problem is, of course, completely integrab
Phase trajectories in the (R,V) plane are the level contours o
the effective Hamiltonian

H̃RV5
G2R

4 F lnS Clog
(G) R3

V D11G1E~V!2VE8~V!

121/2psR1/2V 1/2

5Ẽ0

5const. ~56!

The comparison between the drifting solutions of the
system~52! and the corresponding solutions of the 2D sy
05630
-

-

.

-

tem ~54! is given in Fig. 2. We observe that the agreemen
very good, in particular, for the high values of the circul
tion. Furthermore, the overall evolution is qualitatively
agreement with the numerical results of Lundgren and M
sour @2#, especially for large values of the parameterP0 ,
when the relative variation of the volume is small~see Fig. 3,
where all the plotted quantities have been made dimens
less as in Ref.@2#!.

It should be kept in mind that applicability of the axisym
metric ~both 6D and 2D! models requires, besides 2p2R3

@V andG2@g(V/R)3/2, at least one more condition:

R21/2V 1/2<
G2

23/2ps
. ~57!

This inequality makes constant-cross-area configurati
stable to longitudinal sausagelike perturbations@5#. If a vor-
tex ring bubble violates this criterion in the course of motio
then it will be destabilized by surface tension and the dev
opment of the instability, together with viscous effects, w
result in transformation of the ring into a closed chain
smaller bubbles connected by thin vortex filaments, as i
observed experimentally~concerning this phenomenon
Lundgren and Mansour@2# refer to Ref.@26#. However, we
found with realistic dependencesE(V) that the Hamiltonian
evolution of the spreading ring, described above, typica
goes away from the instability. Thus, to destroy the rin
preliminary viscous diffusion of the vorticity seems to b
necessary@2,6# since it results in slow decreasing of the c
culation along a contour just above the bubble surfa
Finally, this~effective for the instability! circulation becomes
considerably smaller thanG and the ring will tend to break
up.

V. SUMMARY

In this work we have developed a variational approach
the theoretical study of the ideal incompressible irrotatio
flows with a distorted toroidal bubble, in the case when
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FIG. 2. Comparisons of the bubble ring trajectories inZRplane,
corresponding to the approximations~52! and ~54!, for different
values of the circulation. Parameters as in Fig. 1.
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velocity potential is a multivalued function. Using th
method, we have derived exact pseudodifferential equat
of motion for purely two-dimensional flows with circulatio
around a single cavity. Also we have suggested a simpli
Lagrangian for a three-dimensional thin hollow vortex tub
As a simple particular case, the axisymmetric vertical mot
of a spreading vortex ring bubble with a compressed
inside has been considered. Approximate solutions of a
responding finite-dimensional dynamical system have b
obtained.
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APPENDIX A: VARIATION OF *Lconf dt

Here we extract the equations of motion~26! and ~27!
from expression~25!. First of all, variation of the action
05630
ns

d
.
n
s
r-
n

e

*Lconfdt by dc gives the kinematic condition in terms of th
conformal variables

~ ż z̄82zG z8!

2i
5M̂c.

Now a standard procedure is to divide this equation byuz8u2,

ż

z8
2

zG

z̄8
5

2iM̂ c

uz8u2
,

and apply the operatorP̂(2) which excludes Fourier harmon
ics with positivem. As a result, we get Eq.~26!

ż5z8P̂(2)S 2iM̂ c

uz8u2
D .

The variation of*Lconfdt by dz̄ and subsequent exclusio
of the Lagrangian multiplierl gives the equation
1-10
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P̂(2)H F 2 ż~g1c8!1S g
~z2 z̄ !

2i
1ċ2

g2

2r 2D z8

1
g2

2

ieiq

E z̄~q!eiq
dq

2p
Ge2 iqJ 50.

The statementP̂(2) f 50 means thatf contains only har-
monics with positivem. The functionz̄8eiq does not contain
harmonics with negative m. Therefore the equality
P̂(2)( f z̄8eiq)50 is true. In our case this results in

P̂(2)F2 ż z̄8~g1c8!1S g
~z2 z̄ !

2i
1ċ2

g2

2r 2D uz8u2

1
g2

2

i z̄8eiq

z̄1
G50. ~A1!

It is easy to check that

P̂(2)S g2

2

i z̄8eiq

z̄1
D 5

g2

4
.

Now we have to take the real part of Eq.~A1!. Using the
propertyP̂(2)1 P̂(1)51, we get the equation which in fact i
solved forċ,

S g
~z2 z̄ !

2i
1ċ2

g2

2r 2D uz8u2

5S P̂(2)H ~g1c8!uz8u2P̂(2)S 2iM̂ c

uz8u2
D J 1c.c.D 2

g2

2
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